Course title  General Physics 4  
Code  F104  
Status  Lectures(60), Seminars (15), Numerical exercises (30)  
Level  Fundamental course  
Year  1.  Semester  4. 
ECTS  9 ECTS credits  
Lecturer  Branko Vuković, Associate Professor, dr.sc. Matko Mužević, teaching assistant  
Course objective  Understanding the basic physical concepts and relations connected with the structure of matter, kinetic theory of gases, thermodynamics, structure of atom, nuclear reactions, standard model of particles. Get prepared for advanced cources that require knowledge in named fields.  
Prerequisites  Competences acquired in General Physics I, General Physics II, Mathematics 1, Mathematics 2.  
Learning outcomes:  After successfully completed course, students will be able to:

Teaching activity  ECTS  Learning outcome  Students activity  Methods of evaluation  Points  
min  max  
Class attendance  0,5  116  Class attendance  Evidence list (handwritten signature of the student)  0  5 
Colloqium (midterm exams) 
5  116  Expressions of definitions and physical laws. Performs mathematical expressions for certain physical quantities.  Written midterms (3 exams per semester). 
0  45 
Seminars  1  16  The research on a given topic and writing text seminars. Drawing up a presentation and an oral presentation of the seminar.  Rating of the written seminar (up to 5 points), and oral presentation score (up to 5 points).  0  10 
Homework  0,5  1416  Solving numerical problems.  Checking and discussions on the following exercises or consultation.  0  10 
Final exam  3  116  Numerical exercises as written and oral assessment test understanding of physical laws.  Written and oral examination.  0  30 
Total  9  0  100 
Consultations  Dr Branko Vuković, Associate Professor: Monday, 12 – 13 Dr Matko Mužević, Monday, 12 – 13 
Gained competencies  Understanding of the postulates of statistical and thermodynamic description of many – particle systems. Associating law of entropy in isolated systems and phenomenological formulation of second law of thermodynamics. Explaining concept of heat engines using p – V diagram. Applying basic laws of thermodynamics on phase transitions. Present historical development of the idea of atomic structure. Solving Schrödinger equation for simple cases. Describing structure of atomic nucleus. Explaining concept of nuclear reactor. Developing skills for scientific research. Developing writing and speaking communication skills. Using scientific terminology correctly and with self confidence. 
Content (Course curriculum)  Structure of matter; amount of substance, mol, Brown’s motion. Diffusion. Molecular forces. States of matter. Kinetic theory of gases. Ideal gas law. MaxwellBoltzmann distribution. Temperature. Thermometrics. Changes between states of matter. Humidity of air. Phase change graph, triple point of water. Calorimetrics; heat measurements, heat capacity. Calorimeters. Boling point, melting point, heat of transformation. Dalton’s law. Real gases, Van der Waals equation. Thermodynamics; internal energy, work. First law of thermodynamics. GayLussacJoule experiment. Mayer’s relation. Entalpy. Adiabatic process. Second law of thermodynamics, perpetuum mobile. Reversible and irreversible processes. Statistical theory of heat. Entropy. Carnot cycle. Efficiency of a Carnot engine. ClausiusClapeyron equation. Engines. Thermodynamic temperature scale. Refrigerators. Heating pump. Heat transport. Spectrum of black body radiation. Kirchhoff’s law of radiation. Planck law of black body radiation. Stefan law of radiation. Structure of atoms. Schrödinger wave equation. Heisenberg principle of uncertainty. Quantum numbers. The Pauli exclusion principle. Periodic table. Atomic nucleus. Radioactivity. Radioactive decay law. Nuclear reactions; nuclear fission, nuclear fusion. Accelerators, Roentgen’s radiation. Interactions of radiation with matters. Radiation dosimetry. Radiation protection. Particle physics; quarks. The standard model of cosmology. 
Recommended reading 

Additional reading 

Instructional methods  Lectures (60 hours) with the use of Power Point presentations, interactive simulation, the performance of demonstration experiments, addressing selected sample assignments, individual and group work, discussions and tests to check knowledge. Numerical exercises instructed by an assistant (30 hours) with the lead of the assistant. Within the auditory exercises students receive additional tasks for the exercise, which are solved alone for the homework. Checking solutions and discussion on the tutorials. Student presentations and discussions of specific topics at the seminar (15 hours). 
Exam formats  Students have the opportunity to take the numerical problems and theories through three exams (colloquium) per semester. If for each area in each colloquium achieve more than 60% of the points are exempt from the written and oral examination. Other students take a written and oral exam. 
Language  Croatian. English (mentoring students). 
Quality control and successfulness follow up  A questionnaire will be offered to students at the end of the semester with a goal of finding weak spots in the conception and delivery of the course. 